Geophysical Investigations for Dam Safety

Rapid & Cost Effective Investigations & Monitoring of Dams

AF Academy

Dr. Sanjay Rana

About AF Academy

AFA provides training & knowledge sharing platform to decision & policy makers, working professionals, operating level personnel and aspiring students willing to specialise in technical sector through mediums of trainings & courses.

Visit <u>https://www.afacademy.org/</u> for details of all offered online courses

Online Courses (<u>https://www.afacademy.org/</u>)

Latest Course Added

1. Online Certificate Course- Crosshole Seismic Test, Downhole Seismic Test & Crosshole Seismic Tomography

2. Online Certificate Course- Electrical Resistivity Imaging

PARSAN- Technology Partner

- Only company in India providing complete dam geophysical solutions (>70 dams investigated)
- Highly experienced and trained staff.
- Offices in Delhi, Bhopal, Kolkata, Bahrain, Saudi Arabia (Associate).
- Work experience in India, Nepal, Bhutan, Bangladesh, Singapore, Oman, Afghanistan, Saudi Arabia, Bahrain, Kuwait......

About Speaker (Dr. Sanjay Rana)

- Professional Geophysicist, with 31 years of work experience. Chairman AF Academy & Managing Director, PARSAN, An engineering geophysics company
- **Gold Medalist**, University of Roorkee (Now IIT-Roorkee)
- Member of various working committees for development of Code of Practices and Standards, including IRC.
- Pioneered use of Dam Geophysics in India in 1998.
- Successfully used integrated geophysical approach for investigations across flowing rivers & for dam safety
- Completed geophysical investigations of <u>72 hydro power</u> projects.
- Extensive experience of Geophysical Investigations of Dams (Concrete, Masonry & Earthen)
- Geophysical investigation of Dams- <u>>90 dams</u>
- <u>Principal author of 'Guidelines on Geophysical Investigation</u> of Dams'.

The Engineer's first problem in any design situation is to discover what the problem really is

Geophysical Investigations.....

Geophysical Investigations.....

Why Use Geophysics.....

- Low Cost
- Rapid Coverage
- Continuous information
- Optimization of dill holes
- Minimization of 'Surprises'
- Early stage application...Better planning, smooth execution.

Dam Investigations

Dam Investigations

Present Scenario...

- Surface only
- Inspector Dependent
- Standards?

Traditional Approach?

Machine Maintenance Approach...

Machine Preventive Maintenance Approach...

Proposed Approach?

Importance of Timely Detection...Video

Detection...Video

oold dout : : :

Timely Detection...

Dam Geophysics Dam Geophysics

Why Geophysics for Dams?

- Most suitable method for regular health checks of dams
- Early detection of problems
- Totally non-destructive, extremely suitable for structures like dams
- Helps design rehabilitation programs better and accurately
- Helps assess success of rehabilitation measures undertaken
- Identification of damaged areas inside the body dam
- Identification of not visible fractures and voids
- Identification of zones of seepages

⇒ More information + Low Cost + Quick

Available Solutions...

GEOPHYSICAL METHODS	ISSUES AND CONCERNS						
	CONCRETE DAM		EARTH EMBANKMENT DAMS			MASONRY DAMS	
	CRACKS	DEGRADATION	WATER LEAKS	LANDSLIDE	SINK HOLES	WATER LEAKS	STRENGTH
Electrical Resistivity							
Streaming Potential							
Georadar							
Radar Tomography							
Seismic Tomography							
Seismic Refraction							
ReMi							

Which Technique/ Tool?

- Objective of Investigation
- Resolution required
- Depth penetration required
- Physical property to be defined
- Geometry of Dam
- Nature of target & host material

Electrical Resistivity Imaging

Electrical Resistivity Imaging

Application of Electrical Resistivity Imaging- Dams...

- Presence of water/ moisture primarily changes conductivity of dam material.
- Provides vertical sections of electrical properties
- Excellent method to detect saturated zones
- Excellent method to detect leakage paths

Electrical Resistivity Method...

Electrical Resistivity Values...

Electrical Resistivity Imaging...

2D Resistivity Section of Subsurface...

Electrical Resistivity Imaging setup on paved dam top...

Electrical Resistivity Section from dam crest of a masonry dam Showing Zone of Saturation (Green & Blue)

Electrical Resistivity Imaging Results- 3D Volume...

Streaming Potential

Streaming Potential

Application of Streaming Potential- Dams...

- Potential Due to Flow
- Natural Potential
- Flow paths determination
- Qualitative Results
- Interpreted with other methods

Streaming Potential- Basic Principle...

Streaming Potential by Dam Seepage...

.

Streaming Potential by Seepage from Reservoir Floor...

A. STREAMING POTENTIAL GENERATED BY SEEPAGE THROUGH POND OR RESERVOIR FLOOR

Non-Polarising Electrodes for SP Measurement

SP Measurement Procedure

SP Results (with ERI)...

SP Results (with ERI)...

Ground Penetrating Radar

Ground Penetrating Radar

Application of GPR- Dams...

- Used for Stratigraphic Profile, buried objects
- Principle- EM Reflections
- Used in Dams for
 - Characterizing internal structure
 - Soft Zones, heterogeneities
 - Sub Bottom Profiles of Reservoirs
 - Detection of cavities

GPR- Basic Principle...

GPR- Data Acquisition...

GPR- Data Acquisition...

GPR- Results (Cavity)...

GPR- Results (Interfaces)...

GPR- Results (Reservoir Survey)...

GPR- Results (Interfaces)...

GPR- Results (Interfaces)...

Example: Dipping Shallow bedrock/ interface

GPR- Results (Cavity)...

GPR- Results (3D Volume & Time Slice)...

NDT Inspection of Head Raise Tunnel at Parbati Dam, India. Case Study

Ham

A MANA MANA

proceq

The test conducted by both Pundit PD8000 & Proceq GP8000 in Adit-II(Face-IV), TBM site.

The rock type around this site is Quartzite falling in Class-III category, as per RMR Classification.

The tunnel lining is of minimum 400mm thickness.

GPR data

Left and right images shows the GPR data results on unreinforced casted-in-place concrete lining and reinforced concrete lining respectively.

Embedded rebars with cover at 22 to 25cm depth, center reflectors are indicating two overlapping rebars

Ultrasonic pulse-echo data

PARSAN

PARSAN

PARSAN

Seismic Refraction

Seismic Refraction

Application of Seismic Refraction- Dams...

- Undertaken from dam top
- Two or more parallel profiles on dam top and downstream side
- Provides P wave velocity- Strength of subsurface material
- Bedrock mapping
- Phreatic line determination
- Seepage zone identification
- Post construction QC tool

Seismic Refraction- Basic Principle...

Seismic Refraction- Dam Body Velocity Model...

Seismic Refraction- Phreatic Surface...

Seismic Refraction- Phreatic Surface...

Importance of Phreatic Line...

ReMi/MASW

Application of Remi/ MASW- Dams...

- Provides S Wave Velocity of subsurface-Stiffness
- Undertaken from dam top
- Used for earthquake site response
- Used for liquefaction analysis
- Mapping of subsurface and estimating strength of embankment
- Identification of subsidence zones

Basic Principle...

ReMi Results...

Shear-wave velocity (Vs), m/s

ReMi Results...

Shear-wave velocity (Vs), m/s

ReMi Results...

Seismic (Sonic) Tomography Seismic (Souic) Tomography
Application of Seismic Tomography- Dams...

- Provides high resolution images of dam interior
- Provides P wave velocity- Directly linked to strength & Density
- Done between two faces
 - Between dam top and gallery
 - Between upstream and downstream face
- Possible to pin-point defect zones within the dam
- Enables grout quantity estimation
- Determines treatment success by pre and post treatment study

Application of Seismic Tomography- Dams...

- Provides high resolution images of dam interior
- Provides P wave velocity- Directly linked to strength & Density
- Done between two faces
 - Between dam top and gallery
 - Between upstream and downstream face
- Possible to pin-point defect zones within the dam
- Enables grout quantity estimation
- Determines treatment success by pre and post treatment study

Transmitter / Shot Points – Dam Top & Spillway Crest

Transmitter / Shot Points – Dam Top & Spillway Crest

Transmitter / Shot Points – Dam Top & Spillway Crest

Receiver Points – Dam Gallery Crown

Transmitter / Shot Points – Dam Top & Spillway Crest

L-Section Tomography...Ray Path Coverage

L-Section Tomography...Inversion & Velocity Model

Cross Face Tomography...

Option 1

- Receivers (Hydrophone) String in Water Upstream Side
- Transmitter- Seismic Hammer on
 Downstream Side

- Receivers Geophones on Downstream side
- Transmitter- Sparker on Upstream Side

- Receivers (Hydrophone) String in Water ٠ Upstream Side
- Transmitter- Seismic Hammer on ٠ Downstream Side

- Receivers (Hydrophone) String in Water ٠ Upstream Side
- Transmitter- Seismic Hammer on ٠ Downstream Side

- Receivers Geophones on Downstream side
- Transmitter- Sparker on Upstream Side

Cross Face Tomography... Under water area

Cross Face Tomography... Under water area

Cross Face Tomography... Ray Coverage

Cross Face Tomography... Inversion & Velocity Model

Cross Face Tomography... Results

Cross Face Tomography... Results

Cross Face Tomography... Results

Density tomography

Arc dam- A study of contact between Dam and bedrock

Arc dam- A study of contact between Dam and bedrock

When do you need to investigate your dam?

- It is desirable to have a 'base line' data of dam <u>soon after</u> <u>completion of dam.</u>
- For older dams, this time is 'now'.
- Before designing <u>rehabilitation</u> plan
- After carrying out rehabilitation works (**to check efficacy**)
- 'Changes' in physical properties are much easier to interpret than one time measurement values.
- Under 'normal' conditions, such measurements should be repeated every couple of years as a routine dam inspection program.

Key Points...

- Most suitable method for regular health checks of dams
- Early detection of problems
- Totally non-destructive, extremely suitable for structures like dams
- Helps design rehabilitation programs better and accurately
- Helps assess success of rehabilitation measures undertaken
- Identification of damaged areas inside the body dam
- Identification of not visible fractures and voids
- Identification of zones of seepages

⇒ More information + Low Cost + Quick

Geophysical Investigations for Dam Safety

Rapid & Cost Effective Investigations & Monitoring of Dams

AF Academy

Dr. Sanjay Rana