#### **APSU Conference for Dam Safety**

13<sup>th</sup> -14<sup>th</sup> November 2021



## Themes # 1 Seismic hazard analysis and mapping ASSESSMENT OF SEISMIC HAZARD IN NORTHERN ALGERIA EXPERIENCE OF PLAN ORSEC National Emergency Action Plan (ORSEC Plan)

Energoprojekt-Hidroinzenjering l.t.d. Serbia



Energoprojekt - Hidroinženjering J.S.C has been successful in engineering seismology and earthquake engineering in the country and abroad, for several decades.

This implies:

- **1.** Seismic hazard analysis
  - a) Regional seismic studies
  - b) Seismic studies for dams and ancillary facilities
- 2. Seismic micro-reionization
- 3. Analysis for potential Reservoir Triggered Earthquakes (RTE)
- 4. Analysis of seismogenic capacities of specific faults
- 5. Seismic auscultations on the dams



**APSU Conference for Dam Safety** 



The region of Northern Algeria has been struck by the following three disastrous earthquakes in :

- > 09.09.1954 (Ms=6.8, h=5km), Orleansville, in Chelif area,
- > 10.10.1980. (Ms=7.3, h=10 km) El Asnam, in Chelif area and
- > 21.05.2003 (Mw=6.8, h=10km) in the vicinity of Boumerdes.

It has been assessed that only in the period between 1716 and 1989, the earthquakes caused death of more than 34,440 people.

The earthquake in Boumerdes

- magnitude was Mw=6.8,
- focal depth h=10 km,
- whereas duration of shaking was T=18 s.







## **CHARACTERISTICS OF THE ALGERIAN EARTHQUAKES**

- 1. Earthquakes are generally shallow, approximately 10 km
- 2. They are often caused by faults which were not known previously
  - a) underwater faults
  - b) blind faults
- 3. Minor dimensions of the fault may generate magnitudes stronger than expected (examples: El Asnam and Boumerdes)
- 4. Seismic accelerations may be greater than those expected (example: Boumerdes)



# ORSEC PLAN (NATIONAL EMERGENCY RESPONSE PLAN) FOR 28 DAMS LOCATED IN THE REGIONS CENTER AND EAST IN THE NORTHERN ALGERIA

Ministère des Ressources en Eau - Agence Nationale des Barrages et Transferts



**APSU Conference for Dam Safety** 



### **INVESTIGATED DAMS**

### **Region Center**

## **Region Est**



**APSU Conference for Dam Safety** 



|                  |                          | PGA (g)   | PGA (g ) | PGA(g)       |              |
|------------------|--------------------------|-----------|----------|--------------|--------------|
| Dam              | Year of the construction | projected | RPA-99   | RPA-99(2003) | Seismometers |
| 01.Keddara       | 1985                     | 0.25      | 0.25     | 0.30         | yes          |
| 02.Hamiz         | 1879(1935)               | 0.30      | 0.25     | 0.30         | no           |
| 03.Meurad        | 1867                     | x         | 0.25     | 0.40         | no           |
| 04.Lekhal        | 1985                     | x         | 0.25     | 0.25         | no           |
| 05.Bouroumi      | 1986                     | 0.18      | 0.25     | 0.30         | no           |
| 06.Harbil        | 1989                     | x         | 0.25     | 0.30         | no           |
| 07.Ladrat        | 1989                     | 0.20      | 0.25     | 0.25         | no           |
| 08.Boukourdane   | 1992                     | 0.25      | 0.25     | 0.40         | yes          |
| 09. Amrane       | 1988                     | 0.24      | 0.25     | 0.30         | yes          |
| 10. K'Sob        | 1940                     | x         | 0.25     | 0.25         | no           |
| 11.Ain Zada      | 1986                     | 0.13      | 0.25     | 0.25         | no           |
| 12.Taksebt       | 2002                     | 0.12      | 0.25     | 0.25         | yes          |
| 13. Cheffia      | 1965                     | 0.39      | 0.25     | 0.25         | yes          |
| 14. Zardezas     | 1974                     | 0.40      | 0.25     | 0.25         | no           |
| 15. Guenitra     | 1984                     | x         | 0.25     | 0.25         | no           |
| 16.HammamGrouz   | 1987                     | 0.27      | 0.25     | 0.25         | yes          |
| 17.HammamDebagh  | 1987                     | 0.17      | 0.25     | 0.25         | yes          |
| 18. Ain Dalia    | 1987                     | 0.30      | 0.12     | 0.15         | no           |
| 19. Zid          | 1997                     | 0.27      | 0.25     | 0.25         | no           |
| 20. Babar        | 1995                     | 0.36      | 0.12     | 0.15         | no           |
| 21. Oued Cherf   | 1995                     | 0.20      | 0.12     | 0.15         | no           |
| 22. Mexa         | 2002                     | 0.35      | 0.25     | 0.25         | no           |
| 23.F. Gazelles   | 2000                     | x         | 0.12     | 0.15         | no           |
| 24. Zit El Emba  | 2001                     | x         | 0.25     | 0.25         | no           |
| 25. El Agrem     | 2002                     | 0.25      | 0.25     | 0.25         | no           |
| 26. Haroun       | 2002                     | 0.30      | 0.25     | 0.25         | yes          |
| 27.Foum ElGueiss | 1939                     | 0.33      | 0.12     | 0.15         | no           |
| 28.Foum ElGherza | 1957                     | x         | 0.12     | 0.15         | no           |

### **APSU Conference for Dam Safety**

### 13th -14th November 2021





Boukourdane



Meurad



Keddara



Beni Amrane



Hamiz

**APSU Conference for Dam Safety** 

## **APPLIED METHODOLOGY**

By introducing the given risk level and structure lifetime in the calculations, relations for a return period are obtained independently from the analyzed value. As according to Poisson's distribution:

R=(1- 
$$e^{-te/Tr}$$
)=> Tr =  $\frac{t_e}{\ln(1/R)}$ 

Where:

- R given seismic risk level
- t<sub>e</sub> structure lifetime in years
- T<sub>r</sub> return period of the analyzed phenomenon

The above relation gives the return period Tr = 144.26 years for the lifetime of 100 years and risk level of R = 50%, Tr= 218 years for the risk level of R  $\cong$  37% (1/e), Tr = 949.12 years for the maximal design earthquake with the risk level of R = 10% and Tr = 9950 years for the maximal design earthquake with the risk level of R = 1%.

Seismic hazard maps of Northeast Algeria were prepared for these return periods, by using the average value from the four applied attenuation relations.



| Number | Dam             | Maximum peak<br>acceleration<br>(cm/s²) |
|--------|-----------------|-----------------------------------------|
| 1      | Zardezas        | 467,23                                  |
| 2      | Hammam Debagh   | 459,41                                  |
| 3      | Guenitra        | 351,60                                  |
| 4      | Zit Emba        | 309,10                                  |
| 5      | Hammam Grouz    | 287,39                                  |
| 6      | Oued Cherf      | 271,30                                  |
| 7      | Foum El Gherza  | 258,62                                  |
| 8      | Zid             | 250,86                                  |
| 9      | F. Des Gazelles | 245,61                                  |
| 10     | Mexa            | 209,28                                  |
| 11     | Beni-Haroun     | 208,66                                  |
| 12     | Foum El Gueiss  | 208,44                                  |
| 13     | El Agrem        | 204,17                                  |
| 14     | Cheffia         | 189,82                                  |
| 15     | Babar           | 162,54                                  |
| 16     | Ain Dalia       | 127,30                                  |

| Number | Dam         | Maximum peak<br>acceleration (cm/s <sup>2</sup> ) |
|--------|-------------|---------------------------------------------------|
| 1      | Bouroumi    | 445,45                                            |
| 2      | Hamiz       | 400,95                                            |
| 3      | Meurad      | 383,77                                            |
| 4      | Lekhal      | 382,17                                            |
| 5      | Boukourdane | 377,66                                            |
| 6      | Harbil      | 366,49                                            |
| 7      | K'Sob       | 347,87                                            |
| 8      | Taksbet     | 338,05                                            |
| 9      | Beni-Amrane | 332,38                                            |
| 10     | Ain-Zada    | 325,48                                            |
| 11     | Keddara     | 280,38                                            |
| 12     | Ladrat      | 267,19                                            |

The tables present the values of the maximum peak accelerations obtained for the return period of Tr = 10,000 years, increased by  $1\sigma$ 

#### **APSU Conference for Dam Safety**



Carte des accélérations horizontales de pointe pour la période de retour de 144.26 ans. Region Centre



zone de accélération horizontale de pointe (cm/s2))



**APSU Conference for Dam Safety** 



Carte des accélérations horizontales de pointe pour la période de retour de 218.00 ans. Region Centre





**APSU Conference for Dam Safety** 



Carte des accélérations horizontales de pointe pour la période de retour de 950 ans. Region Centre



zone de accélération horizontale de pointe ( cm/s2))

|                                                             | ALGER  | Villes principales |
|-------------------------------------------------------------|--------|--------------------|
| \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | •      |                    |
| శ్భ్భ్భ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్ళ్                    | LADRAT | Site de barrage    |

13th -14th November 2021

**APSU Conference for Dam Safety** 



Carte des accélérations horizontales de pointe pour la période de retour de 9950 ans.Region Centre



22 23 24 25 26 27 28

in to

2

431 AA1

15

LADRAT

Site de barrage

30 201

no an

**APSU Conference for Dam Safety** 

291

28

30'

an an an an



- 1. The dams analyzed within this Project, in relation to the time when they were designed and constructed, mostly satisfy the current International and local Algerian Standards.
- 2. Method of operation of these dams was predominantly in compliance with the operation manuals and instructions.
- 3. The dams withstood even higher values of peak ground accelerations than the PGAs for which they were designed for.



## THANK YOU FOR YOUR ATTENTION !

**APSU Conference for Dam Safety**